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Abstract. Handshapes and human pose estimation are among the most
used pretrained features in sign language recognition. In this study, we
develop a handshape based keyword search (KWS) system for sign lan-
guage and compare different pose based and handshape based encoders
for the task of large vocabulary sign retrieval. We improved KWS per-
formance in sign language by 3.5% mAP score for gloss search and 1.6%
for cross-lingual KWS by combining pose and handshape based KWS
models in a late fusion approach.

Keywords: Sign Language Recognition, Keyword Search, Handshape
Recognition

1 Introduction

Sign language is the visual language of the hearing impaired. It has a different
lexicon, grammar, and word ordering than spoken language; and the information
in sign language is mainly carried through a mixed use of hand movements
and facial expressions. To cope with this multimodal nature, recognition studies
in sign language have historically divided the problem and focused on these
different building blocks separately. Hand shape recognition from RGB hand
patches [12][14][5] models common hand shapes, body pose based sign language
recognition [9][1] mainly models places of articulation in space or along body,
and other studies deal with mouthing [11] and facial expressions [2] which are all
important communication channels of continuous sign language. In this paper,
we introduce a hand-shape based keyword search (KWS) model for continuous
sign language and compare it against KWS with pose key points [17].

Keyword search is a sub-problem of content retrieval which aims to search for
a written query inside a large and unlabeled utterance. In spoken language recog-
nition, keyword search is studied as a different problem than other retrieval prob-
lems such as keyword spotting and term discovery. Content retrieval from con-
tinuous sign language, on the other hand, is generally studied together under the
umbrella term sign spotting and encompasses query-by-example search, keyword
spotting, keyword search, and weakly supervised term discovery. The general
approach in sign spotting requires strong supervision during training/learning.
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Jantunen et al. [18] used dynamic time warping to search for citation form iso-
lated signs in continuous sign language sentences. Yang et al. [20] used condi-
tional random fields to search for 48 in-vocabulary signs that they learned from
isolated examples. Ong et al. used hierarchical random fields to search for 48
the signs inside continuous sign language utterances. Although these approaches
can obtain good retrieval performances, their search vocabulary is in the order
of tens and their real-world applicability to large vocabulary retrieval systems is
limited due to the amount of highly-annotated data they require during training.

Another track in sign spotting research is using weakly labeled continuous
sign language in both learning time as well as testing. Most of the available sign
language data are in the form of sign language interpreting and translations into
the spoken language is the only form of annotation. Since there is no one-to-one
relationship between signs and spoken words, several studies in the literature
focus on discovering signs under the weak supervision of these translations or
subtitles. Cooper and Bowden [7] used mining strategies to learn signs by match-
ing the subtitles from TV shows. Farhadi and Forsyth [8] used HMMs to find
sign boundaries assuming the sign sequence and the speech transcripts have the
same word ordering. Buehler et al. [3] and Kelly et al. [10] applied multiple in-
stance learning (MIL) based strategies to learn signs from subtitles and Kelly et
al. [10] further used the isolated signs they discovered from translations to train
a 30-vocabulary sign spotting framework. Being a concept adopted from speech
recognition, large vocabulary keyword search methods also use weak labels in
both training and test. Tamer and Saraclar [17] used graph convolution on top
of skeleton joints for sign language keyword search. In this work, we introduce a
hand shape based large vocabulary sign retrieval system and by combining with
a pose based KWS model, we increase the recent keyword search performance
in sign language by 3.5% mAP for gloss search and 1.6% mAP for cross-lingual
KWS in RWTH-PHOENIX-Weather 2014T dataset.

The rest of the paper is organized as follows: In chapter 2 we briefly sum-
marize our model and in chapters 3-6 we introduce the details. In chapter 7, we
explain our experimental setting and results. Finally, in section 8 we conclude
the paper.

2 Overview

The pipeline of our hand shape based KWS system is summarized in Figure 1.
Our method starts with preprocessing the video to obtain hand shape feature
vectors for each frame. Frame-level hand features are then fed into a 4-layer 1D
temporal CNN encoder to detect movements. Keyword selection module from
[17] represents the keywords in the same embedding space and focuses on relevant
parts of the encoded hand shape sequence to detect the keyword.
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Fig. 1. Sign language KWS with Hand Shape Features. After the hand crops are ob-
tained with the help of openpose, the hand shape features are extracted from frame.
Word embeddings, 1D Temporal CNN Encoder, selection mechanism and the final feed-
forward layer are trained end-to-end to represent video and text in the same embedding
space.

3 Pre-processing

For each frame, the right hand wrist spatial locations are extracted with the
help of OpenPose [6] pose estimation toolkit and square hand crops centered
around the wrist joint are obtained. By feeding hand crops into one of the two
pre-trained 2D CNN options, we represent hand crop with a vectoral feature.
The frames are omitted if the OpenPose cannot estimate the location of the wrist
joint. For the two 2D CNN options, the resulting one-dimensional hand shape
features are 1024-dimensional for DeepHand and 2048-dimensional for MultiTask
respectively.

3.1 Deephand Feature Extraction

We used the pre-trained CNN from DeepHand [12] to extract hand shape fea-
tures. The model takes hand crops and classifies them into 60 pre-defined hand
shape classes or a junk class. Their training data consists of two isolated sign
language corpora (Danish and New Zealand SL), and continuous Phoenix-2014
Weather dataset. Since the third dataset they used in training is almost identical
to our experiment data and the amount of supervision they used in training is
more than that of our keyword search models, we believe the pre-trained Deep-
Hand model can be viewed as the topline for hand shape encoders in this dataset.
In our implementation, we used 1024 dimensional features from the second-last
layer of DeepHand CNN.



4 N.C. Tamer and M. Saraçlar

3.2 Multitask Feature Extraction

Multitask features are introduced as a tokenization layer for sign language trans-
lation [14]. The network is trained for hand shape recognition in two datasets:
the first one is the Danish and New Zealand SL corpora from DeepHand [12]
excluding RWTH-PHOENIX-Weather 2014, and the second one is a framewise
labeled and smaller Turkish SL dataset [16]. The network shares parameters at
the start, and the final layers are different for matching different hand shape
classification tasks. While the first one is 60 hand shapes and a junk class, the
target for the smaller dataset also includes specific classes for hands showing
certain body parts, thus, incorporating background information to some extent.
Since the domain data is not used in training of Multitask features, it can be
thought of as a real-world scenario for RGB hand shape based KWS. In fea-
ture extraction, we used 2048 dimensional vectors from the shared part of the
multitask network.

4 1D Temporal CNN Encoder

At the end of pre-processing step, we obtain each frame represented with raw
hand shape features. Since duration of a sign is greater than a single frame, how-
ever, we cannot learn keyword embeddings with these raw hand shape features
and a further sequential modeling step is necessary. To model a 1-second-long
temporal sliding window, we used 4-layer 1D convolutional network with kernel
size 7 and same padding. We used leaky ReLU as the activation between layers.
The first layer has 1024 channels for DeepHand and 2048 for MultiTask features.
Then the channel sizes at the end of each layer are 512 for layer 1, 256 for layer
2, 128 for layer 3 and 256 for the last layer, respectively. With the help of same
padding during convolution, we kept the encoded sequence length same with
raw hand features. Each time step at the encoded sequence has access to 25
time steps of raw hand shape features resulting in a temporal range of 1 second
in 25-fps RWTH-PHOENIX-Weather 2014T dataset.

5 Keyword Search Module

The keyword search module follows from [17] and consists of word embeddings,
attention-based selection mechanism, and the final feed-forward layer.

5.1 Word Embeddings

A query in the form of text is first converted into an index in the vocabulary,
and for all unique queries, a simple linear word embedding q is learned to match
encoded sequence frame si in a mutual embedding space.
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Fig. 2. 1D Temporal CNN Encoder

5.2 Attention-based Selection Mechanism

Attention is a widely known concept from Neural Machine Translation, where
it helps the decoder to focus on relevant parts of the source sentence when
predicting the next word in the target sequence [13]. In a similar fashion, we
use attention to focus on the most relevant part of the encoded sequence s1:T to
the query q. The relevance score(q, si) between the ith element of the encoded
sequence si and the query q is measured by a cosine-similarity-based function
with a learnable parameter β:

score(q, si) = β

[
q · si

‖q‖ · ‖si‖

]2
(1)

The context vector c is the weighted average of relevance scores after softmax
function is applied:

c =
∑
i

[
exp (score(q, si))∑
i′ exp(score(q, si′))

]
· si (2)

Once the context vector c is obtained, it is then fed into a one-layer feed-
forward network with sigmoid activation to decide whether the query q is found
inside the weakly-labeled sequence s1:T .

Although it only has β parameter and the weights of the final feed-forward
layer as the learnable parameters, the selection mechanism is the most important
layer of the network since it makes the weakly supervised learning of keyword
embeddings possible. All the keywords in the vocabulary are searched in tandem
in the same sequence. The keywords that appear in the transcription sequence
are labeled positive whilst keywords that are not apparent in the transcription
are trained to match negative labels.
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6 Combining Hand Shape and Pose Based KWS Models

Hand shape and pose keypoints are among the most common pretrained features
used in sign language recognition studies. We applied a late fusion approach to
test the effectiveness of combining keyword search models trained with hand
shapes and pose keypoints.

6.1 Pose based KWS

The model in [17] is employed for pose based keyword search. OpenPose [6]
pose estimation features are extracted from each frame and fed into the Spatial-
Temporal Graph Convolution Encoder [19] in 4 different layouts:

Pose1 (UB+RH+LH; x, y, conf): Upper body and right-left hand key-
points with confidence scores alongside (x, y) spatial locations,

Pose2 (UB+RH+LH; x, y): Upper body and right-left hand keypoints
with (x, y) spatial locations omitting the OpenPose confidence scores,

Pose3 (UB+RH; x, y, conf): Upper body and right hand keypoints with
confidence scores alongside (x, y) spatial locations, and

Pose4 (UB; x, y, conf): Only upper body keypoints with (x, y) spatial
locations and OpenPose keypoint prediction confidences.

6.2 Fusion Strategy

In a setting where we search for a single keyword in a single sign language
utterance, let l ∈ 0, 1 represent the binary label, h the prediction of the hand
shape based KWS model, and k the prediction of the pose keypoints based KWS
model respectively. The fused prediction p is found as

log p = (1− γ) · log h+ γ · log k (3)

The blending ratio γ is the number maximizing the mean average precision
(mAP) score in train and development sets and fusion results are reported using
this γ-value in the test set.

7 Experiments

7.1 Dataset

RWTH-PHOENIX-Weather 2014T [4] dataset is used for our experiments. This
dataset is originally introduced for translation task and includes weather fore-
casts in German, their sign language interpreting in video format, and gloss
sequence corresponding to the signs in the interpreting. The video footage is
in 25 fps and in low resolution with heavy amount of blur. There is 9.2 hours
of training, 37 minutes of development and 43 minutes of test partitions in the
dataset.
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For both the gloss and the cross-lingual keyword search, we used the origi-
nal dataset labels in the following fashion: We formed our vocabulary from the
training set. Each video is weakly labeled with 0 or 1 for every keyword in our
vocabulary by looking at whether the keyword is in the label sequence or not.
We dropped glosses starting with ” ” since they contain on/off tokens and am-
biguous signs, and we did not utilize lemmatization for German keywords. At
the end, we have 1085 glosses in our gloss vocabulary and 2887 German key-
words in cross lingual vocabulary. Since 392 of the glosses and 942 of the German
keywords are shared between train and test sets, we report our results on this
shared vocabulary. Out-of-vocabulary keyword search is not supported in this
implementation.

7.2 Evaluation Metrics

For each keyword, we sorted utterances that give highest prediction scores and
used 4 different information retrieval metrics to measure the quality of the key-
word search performance. The first three are based on precision values at different
ranks and the last one, nDGC, measures the ranking quality.

Mean Average Precision (mAP) is the mean of average precision scores so
that all the keywords are equally important no matter how frequent they are in
the test set. Average precision (AP) for a keyword q is defined as:

AP =
1

|N |

|N |∑
n=1

Precision@n(q) (4)

Precision at 10 (p@10) is the mean of precision scores at first ten retrieved
utterances. It is a common metric in information retrieval for historical reasons,
however, if the keyword is seen only once in the test set and that utterance is
retrieved correctly, we still get p@10 score of 10% for this keyword.

Precision at N (p@N) is the mean of precision scores at first Ntest retrieved
utterances where Ntest, the number of positive utterances in the test set, is
different for each keyword.

Normalized Discounted Cumulative Gain (nDCG) is a measure of rank-
ing quality normalized with the ideal possible ranking. It weights the first re-
trieved utterances more and the gain gets smaller once we move into higher
ranks.

7.3 Effect of Different Encoder Structures on KWS Performance

Keyword search results with various handshape and pose based models are com-
pared in Tables 1 and 2. From the comparison of Pose1 and Pose2 models in both
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tables, we can see that using confidence scores of OpenPose keypoint estimations
increase the retrieval performance in every metric. Both hand shape based gloss
search models in Table 1 perform better than Pose4, pose based gloss search with
only upper body; but addition of right hand in other pose based models increase
the retrieval performance drastically. DeepHand features, which are trained on
the domain data, perform universally better than Multitask features in both
settings.

The results with the fusion of handshape based and pose based KWS model
are also summarized in Tables 1 and 2. We applied a late fusion approach de-
scribed in Section 6.2 with γ values learned from development set. We see that
using fusion of handshape based features and Pose1, we can surpass the recent
KWS performance in both gloss and cross-lingual KWS. When we compare the
fusion models, combining Pose1 with DeepHand is better than combination with
the Multitask based one in many of the metrics. However, the Multitask features
are trained with only out-of-domain data, and the difference between using Mul-
titask features instead of DeepHand is minimal. Thus, we opted for combining
Multitask with Pose1 as our go-to structure.

Table 1. Gloss search results (in %, the higher the better) with different encoder
structures. Both Multitask and DeepHand features are extracted from right hand only.
UB: upper body, RH: right hand, LH: left hand, and conf refers to the use of OpenPose
confidence scores alongside (x, y) spatial locations [17]. In fusion, γ > 0.5 denotes
increasing reliance on the pose model.

Gloss Search Models mAP p@10 p@N nDCG

Pose1 (UB + RH + LH; x, y, conf) 29.24 26.25 25.84 47.52
Pose2 (UB + RH + LH; x, y) 28.05 24.97 24.38 47.02
Pose3 (UB + RH; x, y, conf) 29.21 26.15 25.94 47.68
Pose4 (UB; x, y, conf) 22.80 21.45 19.95 43.15
Multitask 23.54 23.03 20.71 42.89
Multitask + Pose1, γ=0.54 32.22 27.98 27.66 50.08
DeepHand 24.93 23.65 22.27 43.86
DeepHand + Pose1, γ=0.58 32.78 27.88 28.67 50.02

7.4 Gloss-Specific Comparison of Hand Shape and Pose Based
Encoders

In this section, we show that some glosses can be retrieved more easily with
handshape features whilst pose based KWS models are better for others. We
qualitatively compare the model performances by looking 6 isolated sign samples.
Since there is no ground truth labels in RWTH-PHOENIX-Weather 2014T, we
use citation form isolated signs taken from SignDict [15] German sign language
dictionary for illustration. When selecting these 6 signs, we simply sorted all
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Table 2. Cross-lingual search results (in %, the higher the better) with different en-
coder structures. Both Multitask and DeepHand features are extracted from right hand
only. UB: upper body, RH: right hand, LH: left hand, and conf refers to the use of Open-
Pose confidence scores alongside (x, y) spatial locations [17]. In fusion, γ > 0.5 denotes
increasing reliance on the pose model.

Cross-Lingual KWS Models mAP p@10 p@N nDCG

Pose1 (UB + RH + LH; x, y, conf) 13.14 10.57 10.39 32.54
Pose2 (UB + RH + LH; x, y) 12.61 10.31 10.16 31.79
Pose3 (UB + RH; x, y, conf) 12.92 10.59 10.06 32.52
Pose4 (UB; x, y, conf) 10.79 8.77 8.73 29.99
Multitask 10.44 9.05 8.75 29.30
Multitask + Pose1, γ=0.68 14.34 11.52 11.27 33.66
DeepHand 11.11 9.62 9.14 29.85
DeepHand + Pose1, γ=0.60 14.75 11.43 11.63 33.97

WENIG GLEICHELFBESSER APRIL NAH

Fig. 3. Hand-picked definitive single frames for the signs in Table 3. Frames are taken
from isolated videos in SignDict dictionary [15]. Hand shapes are the most important
feature in defining the sign for the first three whilst places of articulation along body
are more definitive for the rest.

Table 3. Gloss-specific AP scores for different models. Both MultiTask and DeepHand
features are extracted from right hand only. UB: upper body, RH: right hand, LH: left
hand. All the pose based KWS models shown in this table are are with (x, y) spatial
locations and OpenPose confidence scores.

Gloss Search
AP (%)

WENIG BESSER ELF APRIL GLEICH NAH

Pose1 (UB+RH+LH) 7.47 17.22 19.24 85.24 76.39 50.81
Pose3 (UB+RH) 4.40 3.44 15.53 49.17 48.98 12.31
Pose4 (UB) 2.62 30.20 17.09 50.83 31.68 5.60
Multitask 55.06 100.00 74.34 8.12 1.48 2.40
DeepHand 62.94 81.25 60.51 3.52 13.83 3.32
Multitask + Pose1 43.10 75.00 36.12 67.19 61.48 45.65

gloss queries according to the difference between Multitask and Pose1 models
and picked the top 3 that also have a dictionary entry in SignDict for both
extremes.
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In Table 3, we can see that for the signs WENIG, BESSER, and ELF, both
Multitask and DeepHand handshape based KWS models perform better than
pose based ones. From the dictionary entries for these signs in Figure 3, we see
that all three of these signs are single-handed and formed of simple hand shapes.
The signs APRIL, GLEICH and NAH are the among the signs where Pose
based models perform significantly better than handshape based ones. When
we do some qualitative analysis, we can see that places of articulation are more
important in defining these signs. In Figure 3, the sign for APRIL includes the
thumb touching the nose and for GLEICH and NAH, we see hands interacting
with each other. In Table 3, it can be seen that both Multitask and DeepHand
handshape based encoders performed poorly compared to Pose1 model that in-
cludes upper body and both hands in the graph layout. Lastly, by observing the
average performance in all these signs, we conclude that our Multitask + Pose1
fusion model performs reasonably better than relying on either hand shape or
pose based models individually.

7.5 Analysis of the Fusion Model

The performance of Multitask + Pose1 model on different gloss vocabulary sub-
sets are shown in Figure 4. When using weak labels during training, a single
utterance is usually not enough to learn which temporal region is relevant for
the sign. Thus, we also report our results in smaller vocabulary subsets. For 168
glosses with number of training samples Ntrain > 50, the mAP score is over
55%. For 115 glosses with Ntrain > 100, more than 7 out of 10 first retrieved
utterances are correct. The results in Figure 4 follows a linear fashion other than
the sharp increase in precision@10 scores. It is needed to have at least 10 positive
utterances in the test set and this is true for most signs with Ntrain > 100.

8 Conclusion

In this paper, we introduce handshape based keyword search (KWS) models with
Multitask[14] and DeepHand[12] pretrained features. We compared the perfor-
mance of pose and handshape based KWS models in RWTH-PHOENIX-Weather
2014T dataset [4]. We improved the keyword search performance in sign language
by applying a late fusion strategy combining pose and handshape based KWS
models. Our findings in gloss-specific analysis suggests that handshape and pose
based KWS models excel at retrieving different glosses. In future, we aim apply-
ing fusion at earlier stages of processing to learn which feature we should rely
on for each specific keyword.
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Fig. 4. Gloss search results of the MultiTask+Pose1 fusion model on different vo-
cabulary subsets. Ntrain denotes the number of training utterances labeled with the
keyword. In general, the retrieval performance during test time is higher for keywords
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