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Abstract. In order to utilize the large amount of unlabeled sign lan-
guage resources, unsupervised learning methods are needed. Motivated
by the successful results of unsupervised term discovery (UTD) in spo-
ken languages, here we explore how to apply similar methods for sign
terms discovery. Our goal is to find the repeating terms from continu-
ous sign videos without any supervision. Using visual features extracted
from RGB videos, we show that a k-nearest neighbours based discov-
ery algorithm designed for speech can also discover sign terms. We also
run experiments using a baseline UTD algorithm and comment on their
differences.
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1 Introduction

Most of the automatic sign language recognition (ASLR) systems to date require
large amounts of training data. Since there does not exist a reliable automatic
annotation tool, sign corpora need to be annotated by human experts. Manual
annotation being a laborious process, limits the number of available annotated
corpora and hinders the development of better ASLR systems. However, there
are plenty of sign language resources that can be used if we employ unsuper-
vised learning methods. In this work, we address this issue and investigate how
unsupervised term discovery in speech can be adapted to sign languages.

The aim of unsupervised term discovery (UTD) is to discover repeating units
in an unknown language, without using any information except the signal itself
(zero-resource). In general, UTD systems take feature time series as input and
the output is the discovered clusters of segments, where each cluster is hypoth-
esized to be a unit in that language. For spoken languages, the repeating units
may correspond to phones, words or common phrases in that language. Usually
UTD systems employ three stages. The first one is the matching stage, in which
pairs of similar segments are discovered. The second stage involves the cluster-
ing of these pairs, so that similar pairs are joined together to form clusters of
hypothesized units. The last stage concerns the parsing of the input sequences
with discovered word-type IDs. The performance of the clustering and parsing
stages depends on the quality of the matching stage. Hence, we narrow our scope
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to the matching stage only; our aim is to discover pairs of similar sub-sequences
from continuous sign language videos, without any additional information.

Unsupervised term discovery has been studied in speech processing for over
a decade. The pioneering work [18] in spoken term discovery introduces the seg-
mental variant of dynamic time warping (SDTW) algorithm to search for pairs
of similar segments. The input files are processed in pairs and pairwise distance
matrices between their time series feature vectors are computed. The idea is to
apply DTW in diagonal bands on a distance matrix between two sequences and
collect the path fragments with minimal distortions. The discovered diagonal
path fragments with high similarities are referred as the matching pairs, which
are clustered to form hypothesized word categories. A similar but more efficient
algorithm [4] uses locality sensitive hashing to approximate distance matrices.
The diagonal fragments with high similarities are searched using efficient image
processing techniques. Costly SDTW search is applied only in the vicinity of
these candidate fragments, thus reducing runtime significantly. In the follow-
ing years, Zero Resource speech challenges [25, 3] were held to allow comparison
of various zero-resource approaches using standardized metrics. The Bayesian
methods [17, 8] that perform full-coverage, require large amounts of data to be
trained and assume that tokens of the same types do not show significant vari-
ability. We opt to use a simpler discovery method that requires no training, the
K-nearest neighbours based algorithm [23]. We show that it can be run for con-
tinuous sign videos, by feeding visual features instead of speech features.

Unsupervised learning has been a rather inactive area in sign language recog-
nition. Previous works that focus on lexicon discovery usually rely on weak su-
pervision, in the form of subtitles [19] or text translations [9] that accompany
sign videos. Other works that focus on extracting sub-units [26, 22, 24] do not
perform discovery at sign level. A similar work to ours [16] finds common signs
among continuous sentences, but uses the information that there is a common
sign. These works rely on weak supervision or incorporate linguistic information
to the discovery process. Zero resource term discovery for sign language is first
explored in [20], in which the SDTW baseline algorithm [4] for speech is used to
discover sign terms. Here, we build upon the same idea and show that a KNN
based term discovery algorithm [23] can also be adapted for sign language term
discovery. We also employ a better cross-validated evaluation scheme and com-
pare our results to SDTW baseline in [20].

In short, our contribution is to show that a KNN based term discovery algo-
rithm [23] can be used for sign languages. We also make a comparison with the
SDTW based baseline in [20], while improving the evaluation scheme. In Section
2, an overview of the discovery pipeline [23] is given for the sake of completeness.
In Section 3 the setup for sign language experiments are presented. Results are
given and discussed in Section 4.
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Fig. 1: Flow diagram of the KNN based discovery algorithm

2 K-Nearest Neighbours Based Discovery Algorithm

We adopt the KNN based discovery pipeline in [23], which begins with extracting
large number of overlapping segments from the input sequences. These segments,
which may have variable lengths, are transformed into fixed dimensional repre-
sentations using smoothed sampling. Then for each segment representation, k
nearest segments are searched so that, each segment is paired with k other seg-
ments. From these segment pairs, the ones that overlap and that have lower
similarities are discarded. The remaining pairs are the discovered pairs. The
flow diagram of this algorithm is displayed in Figure 1 and details of these steps
are explained in the following sections.

2.1 Temporal Segmentation

For an input sequence, the points that are a frames apart are selected as can-
didate segmentation points. The segments are extracted for all possible combi-
nations of these candidate points. As the parameter a decreases, the chance of
finding correct boundaries increases at the expense of more computational cost.
The segment lengths are constrained to an interval, which can be adjusted ac-
cording to the expected term lengths. More formally, for a given d dimensional
feature vector time series X ∈ Rd×T of length T , a set of segments {Xij} are
extracted such that

i, j ∈ {0, a, 2a, ... , bT/ac · a} (1)

lmin < j − i < lmax (2)
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where lmin and lmax set the bounds for segment lengths. This procedure consid-
ers all possible segments as candidates.

2.2 Fixed-Length Representations

We apply the embedding method described in [23], which simply is the sampling
of input vectors, weighted by Gaussian kernels. A segment Xij of L0 frames is
multiplied with a transformation matrix F ∈ RL0×L to be mapped to L-frame
representation. The lth column of F is the kernel defined as

fl = N
(
l · L0

L
, r · L0 + s · gL(l)

)
(3)

where gL(l) is a triangular function such that gL(l) = L
2 −

∣∣L
2 − l

∣∣, r and s are
weighting parameters for the kernel’s variance. The triangular function makes
the frames in the middle more smoothed. This is a very simple method for obtain-
ing fixed dimensional representation and more complex representation learning
methods can be incorporated to this step.

2.3 Nearest Neighbour Search

Fixed-length representations are reshaped to 1d vectors so that each segment is
represented by one of these vectors. The next step is to collect all of them to a
search index, using the FAISS [5] framework, which builds a very efficient search
index on GPU and can be scaled up easily. Then for each segment representa-
tion, the k nearest segments are found using Euclidean distance. If there are N
segments, the search yields N × k pairs of similar segments.

2.4 Pair Selection

The pairs after the KNN search are mostly redundant because they overlap with
each other. Therefore a series of elimination steps are required, so that only
non-overlapping high confidence matches remain. The first step is to retrieve
and sort all neighbours for an input file, and select only the top δ percent of the
pairs. In other words, for an input file i, there are Ni × k pairs and we select
the best δ ×Ni × k pairs. The next step is to remove the self-overlapping pairs,
whose segments overlap with each other. For a pair p = (s1, s2), the self-overlap
ratio between the segments s1, s2 is computed as the lengths of intersection over
union

rself (s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

. (4)

The final step removes the remaining overlapping pairs by using non-maximal
suppression (NMS). All pairs are sorted by decreasing similarity scores. Be-
ginning from the top, the pairs are compared to worse pairs. Worse pairs are
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discarded if they overlap with a better pair, where the pair-overlap ratio is com-
puted as

rpair(pi, pj) =
|si,1 ∩ sj,1| · |si,2 ∩ sj,2|

|si,1| · |si,2|
. (5)

The δ parameter is adjusted to control accuracy-coverage trade-off in the
original work [23]. In our implementation, we fix δ = 5% and apply another
similarity threshold θ at the very end, in order to perform NMS only once and
adjust the coverage after all computations are complete.

3 Setup for Sign Language Experiments

We test the term discovery pipeline described in Section 2 on sign language
videos, by feeding visual features instead of acoustic features, using a similar
setup to [20]. The visual features consist of hand shape and pose features which
are obtained by running pre-trained models on each video frame. We use the
Phoenix Weather 2014 [10] dataset, in which the gloss time boundaries are la-
belled, enabling us to evaluate the quality of discovered segments. Using the
metrics for spoken UTD [15], we compare the KNN based algorithm [23] to the
SDTW baseline [4] and comment on their differences.

3.1 Visual Features

Following the feature extraction steps in [20], we obtain two set of features by
running pre-trained models on each video frame.

Hand Shapes. We use the DeepHand [11] pre-trained hand shape classifier
network. It was originally trained over 1 million right hand images from three
different sign corpora [2, 13, 10], where the hand shape labels were derived ac-
cording to SignWriting notation [21]. For each video frame, we extract the 61
dimensional final layer activations before the softmax layer. We observed that
reducing the dimensions to 40 by applying whitened PCA transformation im-
proved the results in the discovery experiments. We only use the right hand
features for all experiments.

Joint Locations. We also use the 2D joint coordinates that are found by run-
ning OpenPose [1] estimator on each frame. Concatenating the 8 upper body
joints together with 21 keypoints for right and left hand each, we obtain 100
dimensional pose features per frame. The coordinates are normalized by sub-
tracting the neck location and dividing by shoulder length.



6 K. Polat and M. Saraçlar

3.2 Evaluation Criteria

There are numerous metrics for measuring different aspects of discovery systems.
We base our metrics on the ones used in Zero Resource challenges [25, 3] which
are described in detail by Ludusan et. al. [15]. We use the publicly available
TDE toolkit1 designed for spoken UTD. We modify some the metrics for our
application.

The metrics are computed using the gold transcriptions of discovered seg-
ments. In spoken term discovery, the transcriptions are usually at phoneme level
and a segment is associated with gold phones if the segment interval overlaps
with more than 50% or 30ms of the phone duration. In our application, we only
use the 50% criteria because the gold gloss lengths may vary significantly.

– Coverage: It is the ratio of non-overlapping discovered tokens to the discov-
erable tokens in all input sequences. In speech, it is computed as discovered
phones over all phones; because all phones are assumed to be discoverable
since there are usually less then a hundred phones for any spoken language.
However, unlike speech, some sign types may appear only once in the whole
input. Therefore, to be fair, we divide by the number of discoverable tokens,
whose types are seen at least two times.

– Normalized Edit Distance (NED): It measures the quality of pairs, in terms
of Levenshtein distance, which simply is the minimum number of modifi-
cations (insertion, deletion, substitution) required to make two discrete se-
quences the same, normalized by the length of the longer sequence. The final
NED score is averaged over all pairs.

– Grouping Quality: This set of metrics is computed in terms of precision (P ),
recall (R) and F-score (harmonic mean of P,R). It is similar to cluster purity
and inverse purity. If the pairs within a cluster has the same transcription,
then the precision is high. If pairs from separate clusters have the same
transcriptions, then the recall is low. For our application we don’t expect
grouping recall to be high since we don’t perform further clustering step and
leave them in pairs.

Type/token metrics analyse whether discovered groups of sub-units (phones)
correctly represent the units. We don’t report type/token metrics because avail-
able sign labels are not in the same granularity as phonemes in speech. The
gloss labels we have correspond to words in speech. Therefore we report NED
and grouping quality metrics, which are still significant even computed with gloss
labels instead of sub-units.

1 github.com/bootphon/tdev2
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3.3 Dataset

The dataset we use is the Phoenix Weather 2014 [10], which consists of German
Sign Language interpretations of weather forecast aired in a public TV. This
dataset consists of 25 fps, RGB videos that are recorded in similar conditions
where all signers face directly into the camera. We use the training set of multi-
signer (MS) setup, which contains 5671 sentences that total 10 hours of videos.
We use this subset because the gloss labels with time boundaries are provided
only for this subset. These labels are automatically aligned by HMM-LSTM
based model [12] using the sentence level gloss labels, annotated by human ex-
perts. The automatic frame level labels also indicate the HMM states of the
HMM-LSTM based model [12] but we omit this information and use only the
gloss information.

In addition to having time boundaries for labels, this corpus possesses other
benefits for our task. The vocabulary is limited to weather related terms; there
are only 1081 unique gloss types. Moreover, the signers are professionals which
makes the inter-signer variability minimal.

Table 1: Partitions of the Phoenix 2014 MS [10] for cross-validated experiments
Subsets Signer IDs # Sentences Total Size

4 836
1 8 704 1705

9 165

1 1475
2 3 470 1975

6 30

5 1296
3 7 646 1991

2 49

We partition the data into three folds for cross-validation, as shown in Table
1. We aim a partition where the subset sizes in terms of number of sentences
are matched. At each fold, 1/3 of the data is used as development set and the
remaining is used as unseen test set. Then we switch the development set and
re-run the tuning procedure. The results are then reported using the average
of test results, weighted by number of sentences. For each experiment, the final
score threshold θ is adjusted so that Coverage is about 10%, and NED score is
used as decision criterion.
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4 Results and Discussion

In this section, we first discuss the KNN based algorithm [23] and then compare
it to the SDTW baseline presented in [20].

4.1 KNN Based Discovery

We first explored the effect of different hyper-parameters on discovery perfor-
mance. The expected term length for the Phoenix dataset [10] is about 10 frames
(0.4s). Using this information, we set the minimum segment length lmin as 6
frames and segmentation resolution a to be 3 frames. We observed that setting
the maximum segment length lmax as 45 frames (1.8s) allowed discovery of n-
grams. With a, lmin and lmax fixed, we then perform cross-validated grid search
to find the best combination of embedding dimension L and smoothing param-
eters r and s. Even though the optimum values for these parameters vary for
each signer and type of feature, we observed that setting r = 0.1, s = 0.4 and
L = 6 frames yield good results in general.
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Fig. 2: Examples of most confused pairs of glosses for hand shape (DH) and pose
(OP) features. Darker lines represent more confused pairs and circle radii are
proportional to gloss frequencies

Among the two sets of features (DeepHand and OpenPose [11, 1]), the Deep-
Hand features yield better results as shown in Table 2. The most confused pairs
for each type of feature are given in Figure 2. Here, we observe that semantically
similar signs (e.g. rain-shower, wind-storm etc.) which also have similar forms
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are easily confused. Interestingly, the clusters of most confused glosses differ ac-
cording to feature type. This observation leads to the conclusion that in future
studies, these two types of features can be fused together to complement each
others weaknesses.

4.2 Comparison to SDTW Baseline

The segmental DTW based discovery algorithm [4] is regarded as the baseline
for Zero Resource speech challenges [25, 3]. It is also the only algorithm previ-
ously adapted for sign terms discovery [20]. Therefore we use it as the baseline
algorithm to compare our results. We rerun this algorithm in order to obtain
the matching pairs without clustering step, so that only matching stages are
compared. Since this algorithm is reported to work poorly with pose features
[20], we run with the hand shape features only. We apply a similar procedure for
removing overlapping pairs, as described in Section 2.4.
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Fig. 3: Examples of correctly discovered gloss n-grams (Disc.) for both algo-
rithms, together with the number of occurrences of existing gold n-grams

The biggest difference between the KNN based algorithm [23] and SDTW
baseline [4] is the length of discovered segments (see Table 2). The SDTW base-
line is able to discover longer segments, often n-grams, therefore less pairs are
needed to satisfy 10% Coverage. Correctly discovered n-grams for both algo-
rithms are displayed in Figure 3. The baseline algorithm uses a sparse approx-
imation of the distance matrix. Then the SDTW search is performed on the
diagonal segments that remain after the median filtering of the sparse matrix.
Median filtering allows only long diagonal paths to be searched therefore the seg-
ments with this method tend to be longer. Conversely, KNN based algorithm is
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more receptive to shorter segments, because smoothed embedding method may
cause less distortion for shorter segments.

Table 2: Term discovery results of both algorithms at 10% Coverage, averaged
for unseen test sets

NED Grouping Avg. Seg. # Discovered

Experiment (%) P (%) R (%) F (%) Length (sec) Pairs

SDTW (DH) 41.0 18.9 51.8 27.4 2.1 994.9

KNN (OP) 50.7 43.1 39.7 41.0 0.4 1206.4

KNN (DH) 43.4 50.1 52.0 51.0 0.5 1359.2

As shown in Table 2, NED scores for both algorithms are similar. However,
grouping precision of the KNN based algorithm is considerably better. This is
because the grouping quality metrics are originally designed for evaluating clus-
ters that have more than two segments. Since we don’t perform clustering, each
cluster has exactly two segments, and therefore the grouping precision gives the
ratio of perfect matches over all pairs. As a result, the partial matches between
longer segments do not count as positive examples. Another notable difference
is that, using pose features does not significantly degrade discovery performance
for KNN based algorithm, whereas it was reported to degrade performance in
[20]. It should also be noted that KNN based algorithm runs much faster; pre-
computed features for 3 hours of video is processed in about one minute using
GPU, versus 10 minutes using the SDTW baseline.

For all setups, nearly 1% of the perfect matches come from different signers,
most of the correct matches belong to the same signer. Therefore we can think
of these results as the average of signer dependent experiments.

5 Conclusions

In this work, we demonstrate that a KNN based spoken term discovery algo-
rithm [23] can be run for continuous sign language to discover sign terms, by
using features extracted from RGB videos only. We compare this algorithm to
the baseline SDTW method proposed in [20], using the same dataset [10] and
similar metrics. We show that the baseline method is better at discovering longer
sequences and KNN method is better for discovering shorter segments. Nonethe-
less, the KNN based method runs much faster. It is also more flexible in the
sense that, more sophisticated segmentation and embedding approaches can be
incorporated easily. Henceforth, a future direction is to focus on representation
learning methods [14], which may also combine non-manual modalities. Using
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the discovered pairs, representation learning methods such as frame-wise cor-
respondence autoencoders (CAE) [7] or sequence to sequence CAE [6] can be
used. The cross-validated evaluation scheme that we propose may be used in
future studies to benchmark other UTD algorithms and representation learning
methods.
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