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Abstract. Individuals with hearing impairment typically face difficul-
ties in communicating with hearing individuals and during the acqui-
sition of reading and writing skills. Widely adopted by the deaf, Sign
Language (SL) has a grammatical structure where facial expressions as-
sume grammatical and affective functions, differentiate lexical items, par-
ticipate in syntactic construction, and contribute to intensification pro-
cesses. Automatic Sign Language Recognition (ASLR) technology sup-
ports the communication between deaf and hearing individuals, trans-
lating sign language gestures into written or spoken sentences of a target
language. The recognition of facial expressions can improve ASLR accu-
racy rates. There are cases where the absence of a facial expression can
create wrong translations, making them necessary for the understanding
of sign language. This paper presents an approach to facial recognition
for sign language. Brazilian Sign Language (Libras) is used as a case
study. In our approach, we code Libras’ facial expression using the Facial
Action Coding System (FACS). In the paper, we evaluate two convolu-
tional neural networks, a standard CNN and hybrid CNN+LSTM, for
AU recognition. We evaluate the models on a challenging real-world video
database of facial expressions in Libras. The results obtained were 0.87
f1-score average and indicated the potential of the system to recognize
Libras’ facial expressions.

Keywords: Facial action unit recognition, Grammatical facial expres-
sion, Affective facial expression, Sign language

1 Introduction

Sign Languages (SLs) are visuospatial linguistic systems structured on gestures
that are adopted around the world by deaf people to communicate. Analogously
to spoken languages, SLs emerged spontaneously, evolved naturally, reflecting the
worldwide sociocultural differences and giving origin to a wide range of variations
such as the British Sign Language (BSL), the American Sign Language (ASL),
the Chinese Sign Language (CSL), the Brazilian Sign Language (Libras), among
others.
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Being a minority language in most territories, deaf individuals frequently
need a sign language interpreter in their access to school and public services. In
such scenarios, the absence of interpreters typically results in discouraging expe-
riences, even in educational deficits, preventing the inclusion of deaf individuals
in society. In other situations, such as health care, the need for a sign language
interpreter can be embarrassing or a risk factor for urgent care.

Aiming to overcome existing obstacles in the communication between hearing
and deaf people, in the last decade, many efforts have been dedicated to the
development of Automatic Sign Language Recognition (ASLR) technology [41,
62, 44, 61]. ASLR systems recognize and translate sign language content in video
into text. Optionally, the text output can be the input of a Text-To-Speech
(TTS) synthesizer, resulting in a translation from source sign language to target
spoken language.

Together with hand gestures and other non-manual markers, a key challenge
in the development of ASLR technologies is the modeling and classification of
facial expressions.

In SLs, more than communicating affective states, facial expressions represent
morphemes, that fulfill syntactic and pragmatic functions. For this reason, the
problem of recognizing facial expressions in SL context, can be considered more
complex than the typical affective computing problem. In fact, facial expressions
of emotions represent only a subset of common existing facial expressions in
sign languages (Figure 1). Also, more recently, researchers have argued that the
recognition of facial expressions can improve ASLR accuracy rates [55, 1].

The present work adopts a deep neural network architecture to recognize SL
facial expressions coded as Action Units (AUs) of the Facial Action Coding Sys-
tem (FACS) [9]. Although some works implement AU recognition systems, their
application unrelated to emotions is scarce [36]. Taking Brazilian Sign Language
(Libras) as our case study, we coded Libras’ facial expressions using FACS and
we adapted existing network architectures to be more generic in the recognition
of action units other than emotional AUs. While state-of-the-art AU classifica-
tion works only handled eight to twenty AU labels [49, 27, 7, 69], our experiment
considers 80 categories, derived from a comprehensive facial expression survey

Fig. 1. Examples of facial expressions in sign language that are not associated to the
expression of emotions.
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in Libras. Our resulting classification accuracy is competitive with the literature
results and with improved generalization ability.

The paper is organized as follows. In Section 2, we discuss the state-of-the-
art of Facial Expression Recognition (FER), and systems that are based on AU
recognition. In Section 3, we summarize the role of facial expressions in Libras.
Also, their FACS association is introduced. The methodology of our approach
is presented in Section 4. The experimental results are shown in Section 5. We
end by considering the implications of our findings in Section 6.

2 Related Work

Facial Expression Recognition (FER) has been studied for decades and many
approaches have been proposed [10, 42]. There are two main approaches to FER.
One considers the AUs as the features to be recognized in the face [3]. The second
regards a set of prototypical facial expression of emotion defined by Paul Ekman
(1993)[8], as the characteristics to be identified.

Due to the availability of facial expression information and data type from the
affective perspective, it is more frequently encountered the second FER strand
where only emotional labels are considered [35, 59, 40]. A large number of surveys
in Emotional Facial Expression Recognition (EFER) have been published over
the years [48, 25] and lately, well-design network architectures have achieved
better accuracy and exceeded previous results [32, 64]. Such architectures are
composed with decision tree, naive Bayes, multilayer neural networks and K-
nearest neighbours, hidden Markov model (HMM), shallow networks, and deep
neural networks [63, 64, 32].

Although many works adopt FACS as the visual appearance building blocks
of emotion, their study unrelated to emotions is scarce [31]. Particularly in
SL, there are not enough researches that associated non-manuals markers with
FACS. Most of the works that carry a non-manual marker recognition scheme
treats the facial expression by creating their classes of facial actions [60]. A com-
prehensive survey of AU analysis can be found in Martinez et. al. (2017) [36].
AU recognition can also be applied in intelligent vehicle systems that detect and
recognize the facial motion and appearance changes occurring during drowsiness
[56]. Moreover, the sensitivity of FACS to subtle expression differences shows its
capability and application in the medical field as descriptive of characteristics
of painful expressions [30], depression, or to examine evoked and posed facial
expressions in schizophrenia patients [16].

Recently, the use of CNN-based representations has been adopted to model
facial actions [6]. Walecki et. al. (2017) [57] proposed a convolutional neural
network (CNN) model jointly with a Conditional Random Field structure to ease
the inference. In Tran et. al. (2017)[29], the second layer is conditioned to the
latent representation from the first layer, in other words, a two-layer latent space
is learned. Although these models are accurate, they have slow performance.
Also, like most works, these models generally need a feature extraction step [47].
In Li et. al. (2017)[26] the Visual Geometry Group (VGG) network is first used
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with region learning and a fully connected long short-term memory (LSTM)
network to obtained features in the task of AU detection, resulting in a complex
system. Other recent works have attempted a hybrid approach, by combining
AU relations through either generative approaches or discriminative approaches
[18]. However, like most works they still try to learn a global representation
from the input image [47]. In Chu et. al. (2019)[7], the presented hybrid network
takes advantage of spatial CNNs, temporal LSTMs, and their fusions to achieve
multi-label AU detection. The performance over 12 AUs from the BP4D dataset
average F1 score of 82.5 with a 10-fold protocol.

The lack of sufficient details (e.g., parameter optimization strategy, prepro-
cessing procedure, training, and testing protocols) makes it difficult to com-
pare some different AU recognition methodologies, even on the same dataset.
With the purpose of standardization for a fair comparison, challenges arose.
Held for this purpose, FERA (Facial Expression Recognition and Analysis chal-
lenge) and EmotioNet challenges evaluated AUs recognition and discrete emotion
recognition. The last EmotioNet 2017 challenge involved AUs occurrence detec-
tion for 11 AUs. The top algorithm used residual blocks and a sum of binary
cross-entropy loss (PingAn-GammaLab) and achieved 94.46% accuracy [69]. The
baseline results for the challenge was 80.7% accuracy using Kernel Subclass Dis-
criminant Analysis (KSDA) [3].

The main novelty of our proposed approach resides in the joint region detec-
tion of AU and analysis of AU presence. In our framework, we perform a feature
extraction stage and a task learning problem. The first architecture builds on a
standard CNN. The second one was built upon an ensemble of CNN and LSTM.
Differentiated from works where the whole face is used for AU intensity estima-
tion and localization, our approach treats the problem by delimiting face regions
in the presence or absence of AU to overcome the greater number of AU available
on our sign language application.

3 Facial Expressions in Libras

Most SLs in the world can be considered understudied, meaning that aspects
of their grammar and morphology are still undocumented or unknown. Also,
compared to spoken languages, there is a lack of annotated SL corpora, a key
input for supervised machine learning modeling.

In this scenario, a first contribution of the present work was, with the help of
sign language linguists specialists, to conduct a detailed survey of existing facial
expressions in Libras, and to code them using FACS.

In Libras, facial expressions that convey an idea of feeling and emotion are
called Affective Facial Expressions (AFE). Affective facial expressions may start
before a specific sign and end after the sentence has been completed. In other
words, AFEs modulate the whole sentence, modifying the full meaning of a se-
quence of signs. AFEs are adopted, for example, when the signer communicates
ideas sarcastically or when he/she is describing a sad event. A visual character-
istic of AFEs is that they employ an integrated set of facial muscles.
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Fig. 2. In the performance of the signs in Libras, we can analyze the variation of the
facial expressions by the images (A) and (E), where we have examples of grammatical
facial expressions of sentence - GES. In the image (A), the interpreter is signing “why?”
and in (E) she is signing “how?”. In images (B) and (F), the signs “lawyer” and “crazy”
are performed with the same manual gesture. Their difference is only based on the eyes,
eyebrows action, and on the mouth open, which is an example of the grammatical
expression of distinction - GED. Also, in images (C), (D), and (G), the interpreter
performed the sign “expensive”, “very expensive”, and “little expensive”, respectively.
The intensity of the sign is displayed by the change in the facial expression, which passed
from neutral (C) to frown and inflated cheeks (D), or to frown and crocked mouth down
(G). Those are examples of grammatical facial expressions of intensity - GEI. In the
last picture (H), the interpreter shows the sign “happy”, which is accompanied by a
characteristic affective facial expression - AFE.

Grammatical Facial Expressions (GFE) in Libras are expressions that typ-
ically occur at specific points of a sentence or are associated to a specific sign
execution [14]. Observing the different properties of grammatical facial expres-
sions we can categorize them into Grammatical Facial Expression for Sentence
(GES), Grammatical Facial Expressions of Intensity (GEI), Grammatical Facial
Expressions of Homonymy (GEH) and Grammatical Facial Expressions of Norm
(GEN).

GES defines the type of sentence that is being signed [51]. Accordingly with
the structure and information of the sentence, it can be classified into: WH-
question (WH), Yes/No question (YN), Doubt question (DQ), Topic (T), Neg-
ative (N), Affirmative (A), Conditional clause (CC), Focus (F) and Relative
clause (RC). In Libras, there are GES markers that are expressed by the face
and head movements.

GEI differentiates the meaning of the sign assuming the role of a quantifier.
For example, the same sign associated with the word “expensive” can have its
meaning attenuated to “little expensive” or “very expensive”, depending on the
signer’s facial expression. In Fig. 2 (C) , (D) and (G), we show frames of those
signs.
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Also, without its characteristic GEH a sign is incomplete and cannot be
distinguished from other signs with the same manual signal. In other words,
GEHs helps to define the meaning of a sign. For example, in the Fig. 2 (B) and
(F), we have the representation of two signs with different meanings, in which
the manual sign is the same, but the facial expression is different.

The facial expressions that are part of the signal by norm and whose func-
tion is to complete a manual signal, we define as the GEN. When a GEN sign
is performed without the facial expression that defines it, the signal loses its
meaning.

It is possible to notice that many of the non-manual articulators found in Li-
bras are also used in other sign languages [51, 11]. For example, Yes/No questions
in American SL (ASL) are associated with raised eyebrows, head tilted forward
and widely-opened eyes, and WH-questions with furrowed eyebrows and head
forward. Topics are described by raised eyebrows and head slightly back, and
negations are expressed with a head shake[1, 28]. In the German SL (DGS), a
change of head pose combined with the lifting of the eyebrows, corresponds to
a subjunctive. Lip pattern, tongue, and cheeks that are not related to the ar-
ticulation of words can provide information redundant to gesturing to support
differentiation of similar signs [55]. Thus, these facial expressions function inter-
sections reinforce the ability to generalize an application in Libras to other sign
languages.

3.1 Coding Libras’ facial expressions using FACS

The lack of pattern in the description of facial expressions in Libras and in SLs
in general, becomes a major problem to implement a computational recognition
problem. Our approach consisted of coding the Libras’ facial expressions using
the facial action coding system [9]. FACS describe face muscle variations through
52 action units (AUs), that can occur alone or in combination. Table 1 presents
this novel coding of Libras’ Facial Expressions using FACS.

Due to our limited access to examples of all Libras facial expression, we
focus our model on the listed GES class. Likewise, for the AFE class, we adopt
the prototypical seven basic emotions: happiness, sadness, surprise, fear, anger,
disgust, contempt, as reported in the literature. This assumption is possible since
studies show that basic emotions are used and recognized by the Deaf to convey
affective states [43, 19, 23].

Note in Table 1, that the number of AUs that participate in the performance
of the basic emotions (16) is at least two times lower than the number of AUs
that are found in Libras facial expressions (39). Libras’ facial expressions contain
and transcend the regular set of AUs attributed to basic emotions.

4 Methodology

Our methodology consisted of, first, building a database of videos of deaf indi-
viduals and Libras interpreters. The facial expressions present in the videos were
annotated using FACS (Section 4.1).
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Table 1. Classification of Libras Facial Expressions associated with the Facial Action
Coding System

Facial Expression in Libras FACS Muscular / Action Description

B
a
s
i
c

E
x
p
r
e
s
s
i
o
n
s

Upper face
Joined eyebrows AU1 Inner Brow Raiser
Raised eyebrows AU1+AU2 Inner Brow Raiser and Outer Brow Raiser
Frown AU4 Brow Lowerer
Wide open eyes AU5 Upper Lid Raiser
Nose wrinkle AU9 Nose Wrinkler

Slightly closed eyes
AU41 Lid droop
AU42 Slit

Closed eyes AU45 Eyes Closed
Left / Right eye closed AU46 Wink

Direct the eyes

AU61 eyes to the left
AU62 eyes to the right
AU63 eyes up
AU64 eyes down

Lower face
Crooked mouth up AU12 Lip corner puller
Crooked mouth down AU15+AU17 Lip corner depressor and Chin raiser
Projected lips AU18+AU23 Lip Puckerer and Lip Tightener
Tongue in lisp position

AU19 Tongue show
Swinging alveolar tongue
Sibilant tongue
Tip of the tongue touching the lips
Contracted lips AU28 Lip suck

Open mouth
AU25 Lips apart
AU26 Jaw Drop

Inflated cheeks AU33 Cheek blow
semi-open mouth (blowing) AU34 Cheek puff
Contracted cheeks AU35 Cheek suck

C
o
m
p
o
u
n
d

E
x
p
r
e
s
s
i
o
n
s

Grammatical Facial Expressions of Sentence

WH-Question
AU4+AU53 Brief and upward movement of the head and frown

AU4+AU18+AU23+AU53 Tilt back, frown and projected lips.

Y/N Question
AU1+AU2+AU53 Brief and upward movement of the head and raised eyebrows
AU4+AU18+AU23 Tilt to the side, frown and projected lips

AU4+AU18+AU51+AU52 Balancing sideways, frown and projected lips

Negative
AU15+AU17 Crooked mouth down

AU4+AU15+AU17+AU54 Quick nod, frown and crooked mouth down
AU51+AU52 Head balancing sideways

Affirmative AU53+AU54 Balance back and forth of the head

Affective Facial Expressions

Basic Emotions

AU6+AU12 Happiness
AU1+AU4+AU15 Sadness

AU4+AU5+AU7+AU23 Anger
AU1+AU2+AU5B+AU26 Surprise

AU1+AU2+AU5+AU20+AU26
Fear

AU1+AU4+AU5+AU7
AU9+AU15+AU16 Disgust

R12A+R14A Contempt

Second, we implemented a feature extraction process, responsible for creating
the inputs to the evaluated networks (Section 4.2).

Finally, we proposed and evaluated two different deep neural network archi-
tectures (Sections 4.3 and 4.4) .

4.1 HM-LIBRAS Database

Our first prototype, the Head Movement in Libras (HM-Libras) database was
built using parts of videos from the Internet of deaf individuals and sign lan-
guage interpreters [52]. We downloaded videos distributed under the Creative
Commons license, using different combinations of search keywords: Libras, ques-
tions, grammar, answer. Specifically, we target phrases with grammatical facial
expressions for sentence. They were not chosen at random, but with the ad-
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vice of a Libras expert, in such a way that these sentences represent a range of
communication elements of the language. The HM-Libras database is composed
of 80 FACS labeled videos being: 20 videos with statements, 20 videos with
WH-questions, 20 videos with Yes/No questions and 20 videos with negation
sentences.

We collected videos where the person starts facing straight to the camera to
facilitate face detection. These videos are not always professionally curated and
often suffer from perceptual artifacts, varying in illumination, and background.
The set of videos has the presence of three women and seven men. In addition,
HM-Libras includes a dataset matrix composed of facial points detected using
Dlib [21]. The dataset is made available to all interested researchers upon request
to the authors.

In summary, HM-Libras was created with the concept of studying head move-
ment in Libras that occurs in the performance of certain types of sentences, where
each frame was annotated by a single FACS coder.

4.2 Feature Extraction

We extracted 68 landmarks localized on the face placed alongside the ears, chin,
eyes, nose and mouth (Fig. 3A) using DLib [21]. We resized the face images to
96× 96 after cropping the face areas. In sign language, one has also to take into
consideration the possible partial or total occlusion of the face as a result of the
position and the movement of the hands. When that occurs we decide to remove
the frames, to keep some continuity. The lost of face tracking happened in 3%
of the entire database.

Following these steps, we choose to segment the face into two sets, a lower
portion of the face comprehending the chin, mouth, and nose, as well as the
upper portion of the face comprehending the forehead, eyebrows, and eyes.

This region related approach is adopted to increase the system activity sen-
sitivity.

Given that the displacement of landmarks points is a measurable way to
describe facial expression, we argue that the use of geometrical features could
improve performance on models designed to learn AU classification. We add the
geometric characteristics using the landmarks positions and by calculating some
distances. As one can notice, AUs are measured by a change in face configuration.
Thereby calculating the distance between the middle point in the lid tightener
in the eyes can indicate if the eyes are open or closed (Fig. 3B). Likewise, for the
mouth, we calculate the distance between the midpoints of the upper and lower
lip. Each of these measurements was converted into a single gray pixel. In other
words, we compose vectors with the face points pi, i = 1, . . . , 68 and the distance
measures d2(pj , pk) with (j, k) ∈ {(3, 13), (17, 21), (21, 22), (22, 26), (38, 40),

(43, 47), (48, 54), (51, 57), (62, 66)}, later these values are scaled to the range 0−1
and then encoded as gray levels. Finally, they were concatenated in the images
respectively to the region of the face that belongs (see Fig. 4A).
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4.3 CNN Based FACS classification

Based on Keras implementation [4], a CNN model was built following existing
approaches [40, 45]. In Pramerdorfer et. al. (2016)[45] the architectures of a shal-
low CNN outperform modern deep CNNs. We use the information that a CNN
with five hidden layers is already able to learn high-level discriminatory features
to design our network. The model consists of a CNN where the image is passed
through a stack of three convolutional layers. We use filters with a small kernel
field: 2 × 2 for all convolutional layers, which can be seen as a linear transfor-
mation of the input channels followed by non-linearity. The convolution stride
is fixed to one; the spatial padding of convolutional layer input is such that the
spatial resolution is preserved after convolution, i.e., the filling is one pixel for
2 × 2 convolutional layers. Spatial pooling is carried out by two Max-Pooling
layers, which follow the two first convolutional layers. Max-pooling is performed
over a 3 × 3 window, with stride two. The last of convolutional layers is fol-
lowed by three fully-connected layers: the first has 4096 channels, the second has
1024 channels and, the third can perform a 30-way AU classification or 50-way
AU classification depending on the architecture. In the final layer, we use the
softmax layer and thus contains 30 or 50 labels, one for each class whether it
is for the upper part of the face or for the lower part of the face, respectively.
The activation functions are all set to ReLu (Rectified Linear Functions). The
configuration model and other details are shown in Fig. 4B.

4.4 CNN+LSTM for AUs classification

Since AUs are an observable event throughout time, learning the recognition of
facial expressions can be improved by the knowledge of previous states. Natu-
rally, we extended our system to address temporal context by designing a com-
bination of both CNN and LSTM to fuse static features with temporal cues,
inspired by [26, 39, 7].

More specifically, we propose a standard CNN with three convolutional layers
alternated by two max-pooling layers. The convolutional layers are composed
with a kernel of size three and stride one. The first two convolutional layers
have 32 filters and the last one has 64 filters. The max-pooling layers have a

Fig. 3. A prototypical face mask is presented in (A) with white points pi = (xi, yi),
i = 1, . . . , 68. In (B) we mark with red line the chosen distances d2 for measuring
configuration of eyebrows, eyes and mouth.
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Fig. 4. Input image, CNN architecture and CNN+LSTM architecture. In the image
(A), we present the input for our networks. The face image is cropped and later com-
bined with extracted points from the face and their distances. In image (B), we present
the architecture of our CNN, consisting of one input layer, three convolution layers,
two max pooling layers, and two full connection layer. In image (C), we present the
structure of the proposed hybrid network, where the input layer is feed into a convolu-
tional neural network which is followed by a pooling layer that connects to an LSTM.
Detailed descriptions are given in the text.

stride of size two. All activation functions are set as ReLU. The last layer is the
region pooling layer. We model the correlations between spatial and temporal
cues by adding a fusion layer. This fusion layer is a concatenation of feature
maps, made to get regional features. So, from the CNN we have a pooling layer
with 50 filters for the upper part of the face and 30 filters for the lower part
of the face. These feature maps, are fed into stacks of LSTMs to fuse temporal
dependency. We combine two frames of images as sequence into the LSTM. Then
several stacks of LSTMs are used to capture facial actions temporal dependence.
Finally, the outputs of LSTMs are aggregated into a dense layer to perform
multi-label learning. In Fig.4C we present a scheme of CNN+LSTM network
architecture.

5 Experiments

We evaluated the proposed architectures, performing experiments with the

databases: Extended Cohn-Kanade dataset (CK+), DISFA (Denver Intensity of
Spontaneous Facial Expressions), and the HM-Libras database.

CK+ Dataset [33] has the first release called CK which includes 486 sequences
from 97 subjects posing the six basic emotions [20]. Each sequence starts with
neutral and ends in apex of emotion and is AU coded. The second release is
called CK+ and includes both posed and non-posed expressions [33]. Validated
emotion labels have also been added to the metadata. In addition, CK+ provides
baseline results for facial tracking, AU and emotion recognition. Is important to
remark that the AU annotations were given at video and not frame wise.
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DISFA Dataset [38] is a spontaneous database composed by videos of 27 sub-
jects that vary in age from 18 to 50 years. The subjects are filmed while reacting
to an emotional four-minute video stimuli. Also, it comprehends the manually
labeled frame-based annotations of 5-level intensity of twelve FACS, labeled by
two FACS coders. The lack of available data for comparing posed and sponta-
neous expression encouraged the same research group, to construct the Extended
DISFA Dataset (DISFA+) [37], which contains the videos and AU annotations
of posed and spontaneous facial expressions of 9 participants in the same format
as DISFA.

Note that, DISFA and CK+ are standard datasets for AU detection where
the AU correspond with the Libras’ affective facial expressions class. Also, to
the best of our knowledge, HM-Libras is the first Libras database with AU
annotations. The combination of such datasets helped in diversifying training
samples necessary in the sign language application, despite containing different
sets of AUs.

For our first experiment, we choose to separate a percentage of HM-Libras
database for testing, and the rest we combine with CK+ and DISFA databases
to form the training set. Our train set was composed by 69624 frames and
the test set was composed by 7736 frames. To demonstrate the effectiveness
of the proposed model to the Libras application, extensive experiments have
been conducted on our already described networks using a subject independent
and cross databases approach.

Metrics. The performance of AU detection was evaluated on F1 frame-basic
metric. F1 score is the harmonic mean of precision and recall, and it is widely
used in AU detection [22, 66, 6]. Also, to further explore more details of our
model, we also computed the average accuracy, precision, and recall.

Comparative methods. For a thorough comparison, we selected two popular
deep network architectures that were designed and trained on ImageNet, and
have been successfully applied to multiple vision problems: AlexNet [24] and
VGG-16 [54]. To adapt both networks for our classification model, we modify
the input and the output layer. The input layer was adjusted to accommodate
images with a size of 60× 96× 3. Also, the output layer was arranged to exit 30
labels for the upper part of the face and 50 labels for the lower part of the face.
As a baseline, these networks were trained only with the same images, without
geometric face information.

Unlike the common practice in AU literature [46, 68, 67, 17, 27, 5], where only
12 AUs are considered for a single dataset, our research encompass 39 AUs that
are descriptive in Libras. The increased number of AUs makes difficult to fairly
compare our approach with the state-of-art.

Implementation details. We train every architecture for up to 300 epochs
and a fixed mini-batch size of 500 samples. Both models were initialized with a
learning rate of 0.01, optimizing the cross-entropy loss using stochastic gradient
descent (SGD) with a momentum of 0.9 and weight decay of 0.001. Simard et.
al. (2003)[53] have shown that if the data is augmented in a reasonable way,
the model can perform better. For training data augmentation we use horizontal
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mirroring, randomly rotations and two types of shift and zoom transformations.
These are applied indiscriminately in each epoch creating twice the amount of
data.

All experiments are performed on a PC with one NVIDIA GTX 1070 GPU.
It took roughly 160 hours to train each network until convergence that happened
around 250 epochs.

Results and Discussion.

Comparison between existent architectures. Table 2 shows the F1 metrics re-
ported on AlexNet, VGG-16, CNN, and CNN+LSTM. Also, “Avg.” for the
mean score of both face parts. According to the results, both of our networks
CNN and CNN+LSTM outperformed AlexNet and VGG-16 when trained with a
cross-dataset and subject independence. In addition to the improvement by con-
sidering a shallow system, the performance gain of CNN can also be assigned to
the usage of geometric features. These observations provide an evidence that the
learned representation was transferable even when being tested across subjects
and datasets.

CNN+LSTM performs a spatiotemporal fusion which consistently outper-
formed AlexNet and VGG-16 in all metrics. Our hybrid network uses small time
steps window as we want to avoid the suppression of properly detected but short
temporal series of AU activation, yet, if the temporal length of AU duration is
short, then the CNN+LSTM model could not observe such actions [34]. In gen-
eral, adding temporal information helped predicting AUs, but a more extensive
study in the time steps sizes could be beneficial.

It can be seen that our CNN+LSTM does not bring a lot of gain over our
CNN. Surprisingly, for the upper part of the face, we obtain 0.9018 of accuracy
while in the lower part of the face 0.85 of accuracy in the CNN. The average
accuracy for our AU classification using the CNN is 0.88. The value is comparable
to other published results [58, 6, 15, 65].

Another way to compare our models’ effectiveness is to use an off the shelf
AU regressor. OpenFace [2] is an analysis platform capable of face detection and
recognize a subset of AUs, specifically: 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23,
25, 26, 28, and 45. Setting an experiment where the 80 categories are produced
in post prediction and on our test set, the report results are 0.208 avg accuracy
and 0.2115 for f1-score outcomes considerably lower than the results obtained
by our models.

Moreover, models for AU classification handled typically only eight to twenty
AU labels, while our experiment considers 80 categories (including compound
expressions), which is much more challenging and realistic compared to many
existing methods. Generally, our method explicitly inherits the advantage of
information gathered from multiple local regions from complex AU acting as a
deep feature ensemble in both architectures, and hence it naturally improves the
recognition of basic AUs.

Comparison with manual transcription We compare our CNN AU detection
framework with the human transcription of Libras’ grammatical syntactic func-
tions and affective facial expressions in Table 3. The human ratings are given
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by the labeling agreement scores that were obtained by comparing the annota-
tion between two coders. At the same time, the automatic AU detection ratings
are collected by comparing the transcription between the CNN framework out-
put and the two coders. The agreement measure chosen was Fleiss’ kappa [12],
which ranges from −1 to 1. The negative values indicate randomness in label-
ing or poor agreement; while the values in 0 − 0.2 indicate slight agreement;
between 0.21 − 0.4, fair agreement; between 0.41 − 0.6, moderate agreement;
between 0.61 − 0.8, substantial agreement; and, lastly, between 0.81 − 1, per-
fect agreement. Kappas coefficients were calculated for five videos from the Sign
Language Facial Action (SILFA) corpus [50]. SILFA contains videos of deaf in-
terpreters signing in Libras and is transcribed with facial expressions classes and
syntactic functions as defined in Table 1 where the labeling were made by two
linguistics Libras experts.

In our approach, we consider the facial occlusion in sign language by anno-
tation, i.e., by the usage of FACS visibility codes. Thereby, when the algorithm
cannot detect the face, the output is the visibility code AU74, which means
unscorable. However, if the occlusion is due to the hand being in front of the
face, and consequentially, occluding the facial expression, the framework out-
put is AU73, which translates to the entire face not visible. The fourth and fifth
columns of Table 3 presents the occlusion agreement rates as almost perfect con-
fidence for the human annotation and slight/fair confidence for our framework.

Our CNN AU detection framework using geometric and region of interest
features outputs obtained fair/moderate confidence when compared to humans.
Moreover, when averaging our prediction with the manual annotations, the per-
formance can be further improved. This implies that learning Libras’ facial ex-
pressions as a function of basic and complex AUs may be a more accurate and
systematic way than learning facial expressions from the whole face. We also
compare our model using CNN AU detection with [13] that has a model for
recognition of grammatical facial expressions of sentence in Libras with shallow
structure but uses only landmarks to predicted automatically from the output
of a Multi-layer Perceptron and achieved F-scores over 80% for most of their
experiments. Our results outperform [13], demonstrating the potential of our
ensemble detection model if the AU prediction stage is improved.

Table 2. Performance comparison of proposed methods with state-of-the-art networks

Architecture Description Accuracy F1 Precision Recall

AlexNet
upper face 0.7322 0.7219 0.8565 0.6295
lower face 0.6723 0.6639 0.8027 0.5719
Avg. 0.7022 0.6929 0.8296 0.6007

VGG-16
upper face 0.6199 0.6199 0.6199 0.6199
lower face 0.4800 0.4800 0.4800 0.4800
Avg. 0.5499 0.5499 0.5499 0.5499

CNN
upper face 0.9018 0.8900 0.8972 0.8194
lower face 0.8585 0.8522 0.8892 0.8091
Avg. 0.8805 0.8711 0.8932 0.8142

CNN+LSTM
upper face 0.8828 0.8182 0.8714 0.7685
lower face 0.8541 0.7047 0.8174 0.6697
Avg. 0.8684 0.7614 0.8444 0.7191
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6 Conclusions

The first contribution present in this paper is a novel model for recognition of
grammatical and affective facial expressions in Brazilian Sign Language. Based
on the literature, we construct a CNN and a hybrid CNN LSTM, which consisted
of a feature extraction process where we segmented the face into the upper
and lower part, creating two resembling networks that were trained in multiple
databases. When compared with facial expression recognition works, we found
similar results, although our model has capabilities of classification on more
AUs labels. Secondly, was the construction of a database with Libras signers’
fully annotated with FACS, the HM-Libras database. Also, a detailed survey of
existing facial expressions and their syntactic functions in Libras were compiled.
To facilitate and support further studies, we establish an association between the
Facial Action Coding System and the listed Libras facial expressions. The action
unit codification made it possible to observe that the number of facial expressions
portrayed in Libras is superior to the prototypical emotion expressions evaluated
in the literature.

When discussing our networks’ accuracy performance, the interdisciplinary
nature, and the amplitude of our study regarding AU recognition should be taken
into account. Our built CNN presents an average accuracy of 0.88 by performing
facial action unit classification in face images in terms of 80 AU codes, suggesting
that our model gives some insight into AUs who are not usually included in other
studies.

Given this comprehensiveness presented, our model can be generalized to
other applications. Also, we can infer that the more significant number of com-
pound AU influenced positively in recognition of basic AUs by analyzing our
results. Though it is quite acceptable, the performance of the presented method
can be improved in several respects: (1) our proposed method cannot encode
the full range of Libras facial behavior; (2) the different characteristics actions
between the upper part and the lower part of the face is not contemplate by our
network architecture. Further efforts will be required if these limitations are to
be addressed. Besides, it will be interesting to test the proposed method with a
substantially extensive database.

Table 3. Agreement coefficient for comparison with manual annotation and automatic
Libras’ AU detection framework

Sentence Type
Transcription Type Visibility Code

Human
Annotation

Our AU detection
framework

Human
Annotation

Our AU detection
framework

WH-Question 0.82 0.33 0.81 0.20

Yes/No Question 0.75 0.30 0.80 0.20

Negation 0.86 0.45 0.82 0.12

Afirmation 0.77 0.29 0.84 0.22

Affective 0.60 0.24 0.78 0.26
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